**Preferred Device** 

## **High Voltage Switching Diode**

• Device Marking: JS



Formerly a Division of Motorola http://onsemi.com

## **HIGH VOLTAGE**

# **SWITCHING DIODE**



**PLASTIC** SOD-323 **CASE 477** 

### **MAXIMUM RATINGS**

| Symbol                | Rating                     | Value | Unit |
|-----------------------|----------------------------|-------|------|
| V <sub>R</sub>        | Continuous Reverse Voltage | 250   | Vdc  |
| ΙF                    | Peak Forward Current       | 200   | mAdc |
| I <sub>FM(surge</sub> | Peak Forward Surge Current | 625   | mAdc |

### THERMAL CHARACTERISTICS

| Symbol                            | Characteristic                                                                  |                | Unit        |
|-----------------------------------|---------------------------------------------------------------------------------|----------------|-------------|
| PD                                | Total Device Dissipation FR–5 Board,*  T <sub>A</sub> = 25°C  Derate above 25°C | 200<br>1.57    | mW<br>mW/°C |
| $R_{\theta JA}$                   | Thermal Resistance Junction to Ambient                                          | 635            | °C/W        |
| T <sub>J</sub> , T <sub>stg</sub> | Junction and Storage<br>Temperature Range                                       | -55 to<br>+150 | °C          |

\*FR-5 Minimum Pad



## **ORDERING INFORMATION**

| Device   | Package | Shipping           |
|----------|---------|--------------------|
| BAS21HT1 | SOD-323 | 3000 / Tape & Reel |

Preferred devices are recommended choices for future use and best overall value.

## **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub> = 25°C unless otherwise noted)

| Characteristic                                                                                                      | Symbol          | Min | Max          | Unit |
|---------------------------------------------------------------------------------------------------------------------|-----------------|-----|--------------|------|
| OFF CHARACTERISTICS                                                                                                 |                 |     |              |      |
| Reverse Voltage Leakage Current<br>(V <sub>R</sub> = 200 Vdc)<br>(V <sub>R</sub> = 200 Vdc, T <sub>J</sub> = 150°C) | I <sub>R</sub>  |     | 1.0<br>100   | μAdc |
| Reverse Breakdown Voltage<br>(I <sub>BR</sub> = 100 μAdc)                                                           | V(BR)           | 250 | _            | Vdc  |
| Forward Voltage (I <sub>F</sub> = 100 mAdc) (I <sub>F</sub> = 200 mAdc)                                             | VF              | _   | 1000<br>1250 | mV   |
| Diode Capacitance<br>(V <sub>R</sub> = 0, f = 1.0 MHz)                                                              | C <sub>D</sub>  | _   | 5.0          | pF   |
| Reverse Recovery Time (IF = IR = 30 mAdc, RL = 100 $\Omega$ )                                                       | t <sub>rr</sub> | _   | 50           | ns   |



Notes: 1. A 2.0 k $\Omega$  variable resistor adjusted for a Forward Current (IF) of 30 mA.

- 2. Input pulse is adjusted so IR(peak) is equal to 30 mA.
- 3. t<sub>p</sub> » t<sub>rr</sub>

Figure 1. Recovery Time Equivalent Test Circuit



Figure 2. Forward Voltage

Figure 3. Reverse Leakage

#### PACKAGE DIMENSIONS



SOD-323 PLASTIC PACKAGE CASE 477-02 **ISSUE A** 







#### NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
  3. LEAD THICKNESS SPECIFIED PER L/F DRAWING WITH SOLDER PLATING.

|     | MILLIMETERS |       | INCHES    |        |  |
|-----|-------------|-------|-----------|--------|--|
| DIM | MIN         | MAX   | MIN       | MAX    |  |
| Α   | 1.60        | 1.80  | 0.063     | 0.071  |  |
| В   | 1.15        | 1.35  | 0.045     | 0.053  |  |
| С   | 0.80        | 1.00  | 0.031     | 0.039  |  |
| D   | 0.25        | 0.40  | 0.010     | 0.016  |  |
| Ε   | 0.15 REF    |       | 0.006 REF |        |  |
| Н   | 0.00        | 0.10  | 0.000     | 0.004  |  |
| J   | 0.089       | 0.177 | 0.0035    | 0.0070 |  |
| К   | 2.30        | 2.70  | 0.091     | 0.106  |  |

STYLE 1: PIN 1. CATHODE 2 ANODE



SOD-323 Soldering Footprint

ON Semiconductor and War are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

#### PUBLICATION ORDERING INFORMATION

#### North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163. Denver. Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (M-F 2:30pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

Phone: (+1) 303-308-7141 (M-F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

Phone: (+1) 303-308-7142 (M-F 1:30pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Phone: Toll Free from Hong Kong 800-4422-3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549

Phone: 81-3-5487-8345 Email: r14153@onsemi.com

Fax Response Line: 303-675-2167

800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.